Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

OjaKV: Context-Aware Online Low-Rank KV Cache Compression with Oja's Rule (2509.21623v1)

Published 25 Sep 2025 in cs.CL, cs.AI, and cs.LG

Abstract: The expanding long-context capabilities of LLMs are constrained by a significant memory bottleneck: the key-value (KV) cache required for autoregressive generation. This bottleneck is substantial; for instance, a Llama-3.1-8B model processing a 32K-token prompt at a batch size of 4 requires approximately 16GB for its KV cache, a size exceeding the model's weights. While KV-cache compression via low-rank projection is a promising direction, existing methods rely on a static, offline-learned subspace that performs poorly under data distribution shifts. To overcome these limitations, we introduce OjaKV, a novel framework that integrates a strategic hybrid storage policy with online subspace adaptation. First, OjaKV recognizes that not all tokens are equally important for compression; it preserves the crucial first and most recent tokens in full-rank, maintaining high-fidelity anchors for attention. Second, for the vast majority of intermediate tokens, it applies low-rank compression by incrementally adapting the projection basis using Oja's algorithm for online principal component analysis. This adaptation involves a comprehensive update during prompt prefilling and lightweight periodic updates during decoding, ensuring the subspace remains aligned with the evolving context. Crucially, our framework is fully compatible with modern attention modules like FlashAttention. Experiments demonstrate that OjaKV maintains or even improves zero-shot accuracy at high compression ratios. In particular, OjaKV achieves its strongest gains on very long-context benchmarks that require complex reasoning, highlighting the importance of online subspace adaptation in dynamically tracking context shifts. These results establish our hybrid framework as a practical, plug-and-play solution for memory-efficient long-context inference without requiring model fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.