Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Kolmogorov equations for stochastic Volterra processes with singular kernels (2509.21608v1)

Published 25 Sep 2025 in math.PR, math.AP, and q-fin.MF

Abstract: We associate backward and forward Kolmogorov equations to a class of fully nonlinear Stochastic Volterra Equations (SVEs) with convolution kernels $K$ that are singular at the origin. Working on a carefully chosen Hilbert space $\mathcal{H}_1$, we rigorously establish a link between solutions of SVEs and Markovian mild solutions of a Stochastic Partial Differential Equation (SPDE) of transport-type. Then, we obtain two novel It^o formulae for functionals of mild solutions and, as a byproduct, show that their laws solve corresponding Fokker-Planck equations. Finally, we introduce a natural notion of "singular" directional derivatives along $K$ and prove that (conditional) expectations of SVE solutions can be expressed in terms of the unique solution to a backward Kolmogorov equation on $\mathcal{H}_1$. Our analysis relies on stochastic calculus in Hilbert spaces, the reproducing kernel property of the state space $\mathcal{H}_1,$ as well as crucial invariance and smoothing properties that are specific to the SPDEs of interest. In the special case of singular power-law kernels, our conditions guarantee well-posedness of the backward equation either for all values of the Hurst parameter $H,$ when the noise is additive, or for all $H>1/4$ when the noise is multiplicative.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.