Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Real-Time Indoor Object SLAM with LLM-Enhanced Priors (2509.21602v1)

Published 25 Sep 2025 in cs.RO

Abstract: Object-level Simultaneous Localization and Mapping (SLAM), which incorporates semantic information for high-level scene understanding, faces challenges of under-constrained optimization due to sparse observations. Prior work has introduced additional constraints using commonsense knowledge, but obtaining such priors has traditionally been labor-intensive and lacks generalizability across diverse object categories. We address this limitation by leveraging LLMs to provide commonsense knowledge of object geometric attributes, specifically size and orientation, as prior factors in a graph-based SLAM framework. These priors are particularly beneficial during the initial phase when object observations are limited. We implement a complete pipeline integrating these priors, achieving robust data association on sparse object-level features and enabling real-time object SLAM. Our system, evaluated on the TUM RGB-D and 3RScan datasets, improves mapping accuracy by 36.8\% over the latest baseline. Additionally, we present real-world experiments in the supplementary video, demonstrating its real-time performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.