Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From Indexing to Coding: A New Paradigm for Data Availability Sampling (2509.21586v1)

Published 25 Sep 2025 in cs.CR

Abstract: The data availability problem is a central challenge in blockchain systems and lies at the core of the accessibility and scalability issues faced by platforms such as Ethereum. Modern solutions employ several approaches, with data availability sampling (DAS) being the most self-sufficient and minimalistic in its security assumptions. Existing DAS methods typically form cryptographic commitments on codewords of fixed-rate erasure codes, which restrict light nodes to sampling from a predetermined set of coded symbols. In this paper, we introduce a new approach to DAS that modularizes the coding and commitment process by committing to the uncoded data while performing sampling through on-the-fly coding. The resulting samples are significantly more expressive, enabling light nodes to obtain, in concrete implementations, up to multiple orders of magnitude stronger assurances of data availability than from sampling pre-committed symbols from a fixed-rate redundancy code as done in established DAS schemes using Reed Solomon or low density parity check codes. We present a concrete protocol that realizes this paradigm using random linear network coding (RLNC).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube