Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dual-Head Reasoning Distillation: Improving Classifier Accuracy with Train-Time-Only Reasoning (2509.21487v2)

Published 25 Sep 2025 in cs.CL and cs.AI

Abstract: Chain-of-Thought (CoT) prompting often improves classification accuracy, but it introduces a significant throughput penalty with rationale generation (Wei et al., 2022; Cheng and Van Durme, 2024). To resolve this trade-off, we introduce Dual-Head Reasoning Distillation (DHRD), a simple training method for decoder-only LMs that adds (i) a pooled classification head used during training and inference and (ii) a reasoning head supervised by teacher rationales used only in training. We train with a loss function that is a weighted sum of label cross-entropy and token-level LM loss over input-plus-rationale sequences. On seven SuperGLUE tasks, DHRD yields relative gains of 0.65-5.47% over pooled baselines, with notably larger gains on entailment/causal tasks. Since we disable the reasoning head at test time, inference throughput matches pooled classifiers and exceeds CoT decoding on the same backbones by 96-142 times in QPS.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 11 likes.