Forecasting Seismic Waveforms: A Deep Learning Approach for Einstein Telescope (2509.21446v1)
Abstract: We introduce \textit{SeismoGPT}, a transformer-based model for forecasting three-component seismic waveforms in the context of future gravitational wave detectors like the Einstein Telescope. The model is trained in an autoregressive setting and can operate on both single-station and array-based inputs. By learning temporal and spatial dependencies directly from waveform data, SeismoGPT captures realistic ground motion patterns and provides accurate short-term forecasts. Our results show that the model performs well within the immediate prediction window and gradually degrades further ahead, as expected in autoregressive systems. This approach lays the groundwork for data-driven seismic forecasting that could support Newtonian noise mitigation and real-time observatory control.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.