Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DyME: Dynamic Multi-Concept Erasure in Diffusion Models with Bi-Level Orthogonal LoRA Adaptation (2509.21433v1)

Published 25 Sep 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Text-to-image diffusion models (DMs) inadvertently reproduce copyrighted styles and protected visual concepts, raising legal and ethical concerns. Concept erasure has emerged as a safeguard, aiming to selectively suppress such concepts through fine-tuning. However, existing methods do not scale to practical settings where providers must erase multiple and possibly conflicting concepts. The core bottleneck is their reliance on static erasure: a single checkpoint is fine-tuned to remove all target concepts, regardless of the actual erasure needs at inference. This rigid design mismatches real-world usage, where requests vary per generation, leading to degraded erasure success and reduced fidelity for non-target content. We propose DyME, an on-demand erasure framework that trains lightweight, concept-specific LoRA adapters and dynamically composes only those needed at inference. This modular design enables flexible multi-concept erasure, but naive composition causes interference among adapters, especially when many or semantically related concepts are suppressed. To overcome this, we introduce bi-level orthogonality constraints at both the feature and parameter levels, disentangling representation shifts and enforcing orthogonal adapter subspaces. We further develop ErasureBench-H, a new hierarchical benchmark with brand-series-character structure, enabling principled evaluation across semantic granularities and erasure set sizes. Experiments on ErasureBench-H and standard datasets (e.g., CIFAR-100, Imagenette) demonstrate that DyME consistently outperforms state-of-the-art baselines, achieving higher multi-concept erasure fidelity with minimal collateral degradation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.