Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear Risk Sharing on Networks (2509.21411v1)

Published 25 Sep 2025 in econ.TH, cs.CE, and math.OC

Abstract: Over the past decade alternatives to traditional insurance and banking have grown in popularity. The desire to encourage local participation has lead products such as peer-to-peer insurance, reciprocal contracts, and decentralized finance platforms to increasingly rely on network structures to redistribute risk among participants. In this paper, we develop a comprehensive framework for linear risk sharing (LRS), where random losses are reallocated through nonnegative linear operators which can accommodate a wide range of networks. Building on the theory of stochastic and doubly stochastic matrices, we establish conditions under which constraints such as budget balance, fairness, and diversification are guaranteed. The convex order framework allows us to compare different allocations rigorously, highlighting variance reduction and majorization as natural consequences of doubly stochastic mixing. We then extend the analysis to network-based sharing, showing how their topology shapes risk outcomes in complete, star, ring, random, and scale-free graphs. A second layer of randomness, where the sharing matrix itself is random, is introduced via Erd\H{o}s--R\'enyi and preferential-attachment networks, connecting risk-sharing properties to degree distributions. Finally, we study convex combinations of identity and network-induced operators, capturing the trade-off between self-retention and diversification. Our results provide design principles for fair and efficient peer-to-peer insurance and network-based risk pooling, combining mathematical soundness with economic interpretability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.