Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SlideMamba: Entropy-Based Adaptive Fusion of GNN and Mamba for Enhanced Representation Learning in Digital Pathology (2509.21239v1)

Published 25 Sep 2025 in cs.CV and q-bio.QM

Abstract: Advances in computational pathology increasingly rely on extracting meaningful representations from Whole Slide Images (WSIs) to support various clinical and biological tasks. In this study, we propose a generalizable deep learning framework that integrates the Mamba architecture with Graph Neural Networks (GNNs) for enhanced WSI analysis. Our method is designed to capture both local spatial relationships and long-range contextual dependencies, offering a flexible architecture for digital pathology analysis. Mamba modules excels in capturing long-range global dependencies, while GNNs emphasize fine-grained short-range spatial interactions. To effectively combine these complementary signals, we introduce an adaptive fusion strategy that uses an entropy-based confidence weighting mechanism. This approach dynamically balances contributions from both branches by assigning higher weight to the branch with more confident (lower-entropy) predictions, depending on the contextual importance of local versus global information for different downstream tasks. We demonstrate the utility of our approach on a representative task: predicting gene fusion and mutation status from WSIs. Our framework, SlideMamba, achieves an area under the precision recall curve (PRAUC) of 0.751 \pm 0.05, outperforming MIL (0.491 \pm 0.042), Trans-MIL (0.39 \pm 0.017), Mamba-only (0.664 \pm 0.063), GNN-only (0.748 \pm 0.091), and a prior similar work GAT-Mamba (0.703 \pm 0.075). SlideMamba also achieves competitive results across ROC AUC (0.738 \pm 0.055), sensitivity (0.662 \pm 0.083), and specificity (0.725 \pm 0.094). These results highlight the strength of the integrated architecture, enhanced by the proposed entropy-based adaptive fusion strategy, and suggest promising potential for application of spatially-resolved predictive modeling tasks in computational pathology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com