WAVECLIP: Wavelet Tokenization for Adaptive-Resolution CLIP (2509.21153v1)
Abstract: We introduce WAVECLIP, a single unified model for adaptive resolution inference in CLIP, enabled by wavelet-based tokenization. WAVECLIP replaces standard patch embeddings with a multi-level wavelet decomposition, enabling the model to process images coarse to fine while naturally supporting multiple resolutions within the same model. At inference time, the model begins with low resolution tokens and refines only when needed, using key-value caching and causal cross-level attention to reuse computation, effectively introducing to the model only new information when needed. We evaluate WAVECLIP in zero-shot classification, demonstrating that a simple confidence-based gating mechanism enables adaptive early exits. This allows users to dynamically choose a compute-accuracy trade-off using a single deployed model. Our approach requires only lightweight distillation from a frozen CLIP teacher and achieves competitive accuracy with significant computational savings.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.