2000 character limit reached
Federated Markov Imputation: Privacy-Preserving Temporal Imputation in Multi-Centric ICU Environments (2509.20867v1)
Published 25 Sep 2025 in cs.LG and cs.AI
Abstract: Missing data is a persistent challenge in federated learning on electronic health records, particularly when institutions collect time-series data at varying temporal granularities. To address this, we propose Federated Markov Imputation (FMI), a privacy-preserving method that enables Intensive Care Units (ICUs) to collaboratively build global transition models for temporal imputation. We evaluate FMI on a real-world sepsis onset prediction task using the MIMIC-IV dataset and show that it outperforms local imputation baselines, especially in scenarios with irregular sampling intervals across ICUs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.