Papers
Topics
Authors
Recent
2000 character limit reached

WeFT: Weighted Entropy-driven Fine-Tuning for dLLMs (2509.20863v1)

Published 25 Sep 2025 in cs.CL

Abstract: Diffusion models have recently shown strong potential in language modeling, offering faster generation compared to traditional autoregressive approaches. However, applying supervised fine-tuning (SFT) to diffusion models remains challenging, as they lack precise probability estimates at each denoising step. While the diffusion mechanism enables the model to reason over entire sequences, it also makes the generation process less predictable and often inconsistent. This highlights the importance of controlling key tokens that guide the direction of generation. To address this issue, we propose WeFT, a weighted SFT method for diffusion LLMs, where tokens are assigned different weights based on their entropy. Derived from diffusion theory, WeFT delivers substantial gains: training on s1K, s1K-1.1, and 3k samples from open-r1, it achieves relative improvements of 39%, 64%, and 83% over standard SFT on four widely used reasoning benchmarks (Sudoku, Countdown, GSM8K, and MATH-500). The code and models will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.