Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LogReasoner: Empowering LLMs with Expert-like Coarse-to-Fine Reasoning for Log Analysis Tasks (2509.20798v1)

Published 25 Sep 2025 in cs.AI and cs.SE

Abstract: Log analysis is crucial for monitoring system health and diagnosing failures in complex systems. Recent advances in LLMs offer new opportunities for automated log analysis, leveraging their reasoning capabilities to perform tasks such as anomaly detection and failure prediction. However, general-purpose LLMs struggle to formulate structured reasoning workflows that align with expert cognition and deliver precise details of reasoning steps. To address these challenges, we propose LogReasoner, a coarse-to-fine reasoning enhancement framework designed to enable LLMs to reason log analysis tasks like experts. LogReasoner consists of two stages: (1) coarse-grained enhancement of expert thinking, where high-level expert thoughts are constructed from collected troubleshooting flowcharts and existing tasks to enable LLMs to formulate structured reasoning workflows and (2) fine-grained enhancement of specific steps, where we first fine-tune the LLM with task-specific stepwise solutions to enhance the LLM for instantiated reasoning, then employ the preference learning to calibrate the LLM's reasoning details from its mistakes, further strengthen the LLM's analytical granularity and correctness. We evaluate LogReasoner on four distinct log analysis tasks using open-source LLMs such as Qwen-2.5 and Llama-3. Experimental results show that LogReasoner significantly outperforms existing LLMs, achieving state-of-the-art performance and demonstrating its effectiveness in enhancing the reasoning capabilities of LLMs for log analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.