Papers
Topics
Authors
Recent
2000 character limit reached

DAC-LoRA: Dynamic Adversarial Curriculum for Efficient and Robust Few-Shot Adaptation

Published 25 Sep 2025 in cs.CV, cs.AI, and cs.LG | (2509.20792v1)

Abstract: Vision-LLMs (VLMs) are foundational to critical applications like autonomous driving, medical diagnosis, and content moderation. While Parameter-Efficient Fine-Tuning (PEFT) methods like LoRA enable their efficient adaptation to specialized tasks, these models remain vulnerable to adversarial attacks that can compromise safety-critical decisions. CLIP, the backbone for numerous downstream VLMs, is a high-value target whose vulnerabilities can cascade across the multimodal AI ecosystem. We propose Dynamic Adversarial Curriculum DAC-LoRA, a novel framework that integrates adversarial training into PEFT. The core principle of our method i.e. an intelligent curriculum of progressively challenging attack, is general and can potentially be applied to any iterative attack method. Guided by the First-Order Stationary Condition (FOSC) and a TRADES-inspired loss, DAC-LoRA achieves substantial improvements in adversarial robustness without significantly compromising clean accuracy. Our work presents an effective, lightweight, and broadly applicable method to demonstrate that the DAC-LoRA framework can be easily integrated into a standard PEFT pipeline to significantly enhance robustness.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.