Parallel Thinking, Sequential Answering: Bridging NAR and AR for Efficient Reasoning (2509.20744v1)
Abstract: We study reasoning tasks through a framework that integrates auto-regressive (AR) and non-autoregressive (NAR) LLMs. AR models, which generate text sequentially, excel at producing coherent outputs but often suffer from slow inference, particularly in reasoning-intensive domains such as mathematics and code, where lengthy chains of thought are required. In contrast, NAR models, such as discrete diffusion models, allow parallel generation and offer substantial speedups, though typically at the cost of reduced output quality. To address these limitations, we introduce a new paradigm in which an NAR model efficiently produces intermediate reasoning traces, which subsequently guide an AR model to deliver precise final answers. Experiments demonstrate that our approach yields significant 26% improvements over strong baselines while substantially reducing inference cost.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.