Papers
Topics
Authors
Recent
2000 character limit reached

Theoretical Bounds for Stable In-Context Learning (2509.20677v1)

Published 25 Sep 2025 in cs.LG

Abstract: In-context learning (ICL) is flexible but its reliability is highly sensitive to prompt length. This paper establishes a non-asymptotic lower bound that links the minimal number of demonstrations to ICL stability under fixed high-dimensional sub-Gaussian representations. The bound gives explicit sufficient conditions in terms of spectral properties of the covariance, providing a computable criterion for practice. Building on this analysis, we propose a two-stage observable estimator with a one-shot calibration that produces practitioner-ready prompt-length estimates without distributional priors. Experiments across diverse datasets, encoders, and generators show close alignment between the predicted thresholds and empirical knee-points, with the theory acting as a conservative but reliable upper bound; the calibrated variant further tightens this gap. These results connect spectral coverage to stable ICL, bridge theory and deployment, and improve the interpretability and reliability of large-scale prompting in realistic finite-sample regimes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.