Function Spaces Without Kernels: Learning Compact Hilbert Space Representations (2509.20605v1)
Abstract: Function encoders are a recent technique that learn neural network basis functions to form compact, adaptive representations of Hilbert spaces of functions. We show that function encoders provide a principled connection to feature learning and kernel methods by defining a kernel through an inner product of the learned feature map. This kernel-theoretic perspective explains their ability to scale independently of dataset size while adapting to the intrinsic structure of data, and it enables kernel-style analysis of neural models. Building on this foundation, we develop two training algorithms that learn compact bases: a progressive training approach that constructively grows bases, and a train-then-prune approach that offers a computationally efficient alternative after training. Both approaches use principles from PCA to reveal the intrinsic dimension of the learned space. In parallel, we derive finite-sample generalization bounds using Rademacher complexity and PAC-Bayes techniques, providing inference time guarantees. We validate our approach on a polynomial benchmark with a known intrinsic dimension, and on nonlinear dynamical systems including a Van der Pol oscillator and a two-body orbital model, demonstrating that the same accuracy can be achieved with substantially fewer basis functions. This work suggests a path toward neural predictors with kernel-level guarantees, enabling adaptable models that are both efficient and principled at scale.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.