Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Unsupervised Domain Adaptation with an Unobservable Source Subpopulation (2509.20587v1)

Published 24 Sep 2025 in stat.ML, cs.LG, and stat.ME

Abstract: We study an unsupervised domain adaptation problem where the source domain consists of subpopulations defined by the binary label $Y$ and a binary background (or environment) $A$. We focus on a challenging setting in which one such subpopulation in the source domain is unobservable. Naively ignoring this unobserved group can result in biased estimates and degraded predictive performance. Despite this structured missingness, we show that the prediction in the target domain can still be recovered. Specifically, we rigorously derive both background-specific and overall prediction models for the target domain. For practical implementation, we propose the distribution matching method to estimate the subpopulation proportions. We provide theoretical guarantees for the asymptotic behavior of our estimator, and establish an upper bound on the prediction error. Experiments on both synthetic and real-world datasets show that our method outperforms the naive benchmark that does not account for this unobservable source subpopulation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 6 likes.