Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FZModules: A Heterogeneous Computing Framework for Customizable Scientific Data Compression Pipelines (2509.20563v1)

Published 24 Sep 2025 in cs.DC

Abstract: Modern scientific simulations and instruments generate data volumes that overwhelm memory and storage, throttling scalability. Lossy compression mitigates this by trading controlled error for reduced footprint and throughput gains, yet optimal pipelines are highly data and objective specific, demanding compression expertise. GPU compressors supply raw throughput but often hard-code fused kernels that hinder rapid experimentation, and underperform in rate-distortion. We present FZModules, a heterogeneous framework for assembling error-bounded custom compression pipelines from high-performance modules through a concise extensible interface. We further utilize an asynchronous task-backed execution library that infers data dependencies, manages memory movement, and exposes branch and stage level concurrency for powerful asynchronous compression pipelines. Evaluating three pipelines built with FZModules on four representative scientific datasets, we show they can compare end-to-end speedup of fused-kernel GPU compressors while achieving similar rate-distortion to higher fidelity CPU or hybrid compressors, enabling rapid, domain-tailored design.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.