Boosting Zero-Shot VLN via Abstract Obstacle Map-Based Waypoint Prediction with TopoGraph-and-VisitInfo-Aware Prompting (2509.20499v1)
Abstract: With the rapid progress of foundation models and robotics, vision-language navigation (VLN) has emerged as a key task for embodied agents with broad practical applications. We address VLN in continuous environments, a particularly challenging setting where an agent must jointly interpret natural language instructions, perceive its surroundings, and plan low-level actions. We propose a zero-shot framework that integrates a simplified yet effective waypoint predictor with a multimodal LLM (MLLM). The predictor operates on an abstract obstacle map, producing linearly reachable waypoints, which are incorporated into a dynamically updated topological graph with explicit visitation records. The graph and visitation information are encoded into the prompt, enabling reasoning over both spatial structure and exploration history to encourage exploration and equip MLLM with local path planning for error correction. Extensive experiments on R2R-CE and RxR-CE show that our method achieves state-of-the-art zero-shot performance, with success rates of 41% and 36%, respectively, outperforming prior state-of-the-art methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.