Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Shared Neural Space: Unified Precomputed Feature Encoding for Multi-Task and Cross Domain Vision (2509.20481v1)

Published 24 Sep 2025 in cs.CV and cs.AI

Abstract: The majority of AI models in imaging and vision are customized to perform on specific high-precision task. However, this strategy is inefficient for applications with a series of modular tasks, since each requires a mapping into a disparate latent domain. To address this inefficiency, we proposed a universal Neural Space (NS), where an encoder-decoder framework pre-computes features across vision and imaging tasks. Our encoder learns transformation aware, generalizable representations, which enable multiple downstream AI modules to share the same feature space. This architecture reduces redundancy, improves generalization across domain shift, and establishes a foundation for effecient multi-task vision pipelines. Furthermore, as opposed to larger transformer backbones, our backbone is lightweight and CNN-based, allowing for wider across hardware. We furthur demonstrate that imaging and vision modules, such as demosaicing, denoising, depth estimation and semantic segmentation can be performed efficiently in the NS.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.