Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-Efficient ASR Personalization for Non-Normative Speech Using an Uncertainty-Based Phoneme Difficulty Score for Guided Sampling (2509.20396v1)

Published 23 Sep 2025 in eess.AS, cs.AI, and cs.SD

Abstract: Automatic speech recognition (ASR) systems struggle with non-normative speech from individuals with impairments caused by conditions like cerebral palsy or structural anomalies. The high acoustic variability and scarcity of training data severely degrade model performance. This work introduces a data-efficient personalization method that quantifies phoneme-level uncertainty to guide fine-tuning. We leverage Monte Carlo Dropout to estimate which phonemes a model finds most difficult and use these estimates for a targeted oversampling strategy. We validate our method on English and German datasets. Crucially, we demonstrate that our model-derived uncertainty strongly correlates with phonemes identified as challenging in an expert clinical logopedic report, marking, to our knowledge, the first work to successfully align model uncertainty with expert assessment of speech difficulty. Our results show that this clinically-validated, uncertainty-guided sampling significantly improves ASR accuracy, delivering a practical framework for personalized and inclusive ASR.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube