Papers
Topics
Authors
Recent
2000 character limit reached

Graph Variate Neural Networks (2509.20311v1)

Published 24 Sep 2025 in cs.LG

Abstract: Modelling dynamically evolving spatio-temporal signals is a prominent challenge in the Graph Neural Network (GNN) literature. Notably, GNNs assume an existing underlying graph structure. While this underlying structure may not always exist or is derived independently from the signal, a temporally evolving functional network can always be constructed from multi-channel data. Graph Variate Signal Analysis (GVSA) defines a unified framework consisting of a network tensor of instantaneous connectivity profiles against a stable support usually constructed from the signal itself. Building on GVSA and tools from graph signal processing, we introduce Graph-Variate Neural Networks (GVNNs): layers that convolve spatio-temporal signals with a signal-dependent connectivity tensor combining a stable long-term support with instantaneous, data-driven interactions. This design captures dynamic statistical interdependencies at each time step without ad hoc sliding windows and admits an efficient implementation with linear complexity in sequence length. Across forecasting benchmarks, GVNNs consistently outperform strong graph-based baselines and are competitive with widely used sequence models such as LSTMs and Transformers. On EEG motor-imagery classification, GVNNs achieve strong accuracy highlighting their potential for brain-computer interface applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.