Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Are Neural Networks Collision Resistant? (2509.20262v1)

Published 24 Sep 2025 in cond-mat.dis-nn, cs.CR, and math.PR

Abstract: When neural networks are trained to classify a dataset, one finds a set of weights from which the network produces a label for each data point. We study the algorithmic complexity of finding a collision in a single-layer neural net, where a collision is defined as two distinct sets of weights that assign the same labels to all data. For binary perceptrons with oscillating activation functions, we establish the emergence of an overlap gap property in the space of collisions. This is a topological property believed to be a barrier to the performance of efficient algorithms. The hardness is supported by numerical experiments using approximate message passing algorithms, for which the algorithms stop working well below the value predicted by our analysis. Neural networks provide a new category of candidate collision resistant functions, which for some parameter setting depart from constructions based on lattices. Beyond relevance to cryptography, our work uncovers new forms of computational hardness emerging in large neural networks which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.