Probing Gender Bias in Multilingual LLMs: A Case Study of Stereotypes in Persian (2509.20168v1)
Abstract: Multilingual LLMs are increasingly used worldwide, making it essential to ensure they are free from gender bias to prevent representational harm. While prior studies have examined such biases in high-resource languages, low-resource languages remain understudied. In this paper, we propose a template-based probing methodology, validated against real-world data, to uncover gender stereotypes in LLMs. As part of this framework, we introduce the Domain-Specific Gender Skew Index (DS-GSI), a metric that quantifies deviations from gender parity. We evaluate four prominent models, GPT-4o mini, DeepSeek R1, Gemini 2.0 Flash, and Qwen QwQ 32B, across four semantic domains, focusing on Persian, a low-resource language with distinct linguistic features. Our results show that all models exhibit gender stereotypes, with greater disparities in Persian than in English across all domains. Among these, sports reflect the most rigid gender biases. This study underscores the need for inclusive NLP practices and provides a framework for assessing bias in other low-resource languages.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.