Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Choose Your Battles: Distributed Learning Over Multiple Tug of War Games (2509.20147v1)

Published 24 Sep 2025 in cs.GT, cs.LG, cs.MA, cs.SY, and eess.SY

Abstract: Consider N players and K games taking place simultaneously. Each of these games is modeled as a Tug-of-War (ToW) game where increasing the action of one player decreases the reward for all other players. Each player participates in only one game at any given time. At each time step, a player decides the game in which they wish to participate in and the action they take in that game. Their reward depends on the actions of all players that are in the same game. This system of K games is termed `Meta Tug-of-War' (Meta-ToW) game. These games can model scenarios such as power control, distributed task allocation, and activation in sensor networks. We propose the Meta Tug-of-Peace algorithm, a distributed algorithm where the action updates are done using a simple stochastic approximation algorithm, and the decision to switch games is made using an infrequent 1-bit communication between the players. We prove that in Meta-ToW games, our algorithm converges to an equilibrium that satisfies a target Quality of Service reward vector for the players. We then demonstrate the efficacy of our algorithm through simulations for the scenarios mentioned above.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube