Papers
Topics
Authors
Recent
2000 character limit reached

Steerable Adversarial Scenario Generation through Test-Time Preference Alignment (2509.20102v1)

Published 24 Sep 2025 in cs.AI

Abstract: Adversarial scenario generation is a cost-effective approach for safety assessment of autonomous driving systems. However, existing methods are often constrained to a single, fixed trade-off between competing objectives such as adversariality and realism. This yields behavior-specific models that cannot be steered at inference time, lacking the efficiency and flexibility to generate tailored scenarios for diverse training and testing requirements. In view of this, we reframe the task of adversarial scenario generation as a multi-objective preference alignment problem and introduce a new framework named \textbf{S}teerable \textbf{A}dversarial scenario \textbf{GE}nerator (SAGE). SAGE enables fine-grained test-time control over the trade-off between adversariality and realism without any retraining. We first propose hierarchical group-based preference optimization, a data-efficient offline alignment method that learns to balance competing objectives by decoupling hard feasibility constraints from soft preferences. Instead of training a fixed model, SAGE fine-tunes two experts on opposing preferences and constructs a continuous spectrum of policies at inference time by linearly interpolating their weights. We provide theoretical justification for this framework through the lens of linear mode connectivity. Extensive experiments demonstrate that SAGE not only generates scenarios with a superior balance of adversariality and realism but also enables more effective closed-loop training of driving policies. Project page: https://tongnie.github.io/SAGE/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.