Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Demystifying the Evolution of Neural Networks with BOM Analysis: Insights from a Large-Scale Study of 55,997 GitHub Repositories (2509.20010v1)

Published 24 Sep 2025 in cs.SE

Abstract: Neural networks have become integral to many fields due to their exceptional performance. The open-source community has witnessed a rapid influx of neural network (NN) repositories with fast-paced iterations, making it crucial for practitioners to analyze their evolution to guide development and stay ahead of trends. While extensive research has explored traditional software evolution using Software Bill of Materials (SBOMs), these are ill-suited for NN software, which relies on pre-defined modules and pre-trained models (PTMs) with distinct component structures and reuse patterns. Conceptual AI Bills of Materials (AIBOMs) also lack practical implementations for large-scale evolutionary analysis. To fill this gap, we introduce the Neural Network Bill of Material (NNBOM), a comprehensive dataset construct tailored for NN software. We create a large-scale NNBOM database from 55,997 curated PyTorch GitHub repositories, cataloging their TPLs, PTMs, and modules. Leveraging this database, we conduct a comprehensive empirical study of neural network software evolution across software scale, component reuse, and inter-domain dependency, providing maintainers and developers with a holistic view of its long-term trends. Building on these findings, we develop two prototype applications, \textit{Multi repository Evolution Analyzer} and \textit{Single repository Component Assessor and Recommender}, to demonstrate the practical value of our analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.