Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Choosing to Be Green: Advancing Green AI via Dynamic Model Selection (2509.19996v1)

Published 24 Sep 2025 in cs.CY and cs.AI

Abstract: Artificial Intelligence is increasingly pervasive across domains, with ever more complex models delivering impressive predictive performance. This fast technological advancement however comes at a concerning environmental cost, with state-of-the-art models - particularly deep neural networks and LLMs - requiring substantial computational resources and energy. In this work, we present the intuition of Green AI dynamic model selection, an approach based on dynamic model selection that aims at reducing the environmental footprint of AI by selecting the most sustainable model while minimizing potential accuracy loss. Specifically, our approach takes into account the inference task, the environmental sustainability of available models, and accuracy requirements to dynamically choose the most suitable model. Our approach presents two different methods, namely Green AI dynamic model cascading and Green AI dynamic model routing. We demonstrate the effectiveness of our approach via a proof of concept empirical example based on a real-world dataset. Our results show that Green AI dynamic model selection can achieve substantial energy savings (up to ~25%) while substantially retaining the accuracy of the most energy greedy solution (up to ~95%). As conclusion, our preliminary findings highlight the potential that hybrid, adaptive model selection strategies withhold to mitigate the energy demands of modern AI systems without significantly compromising accuracy requirements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: