BioBO: Biology-informed Bayesian Optimization for Perturbation Design (2509.19988v1)
Abstract: Efficient design of genomic perturbation experiments is crucial for accelerating drug discovery and therapeutic target identification, yet exhaustive perturbation of the human genome remains infeasible due to the vast search space of potential genetic interactions and experimental constraints. Bayesian optimization (BO) has emerged as a powerful framework for selecting informative interventions, but existing approaches often fail to exploit domain-specific biological prior knowledge. We propose Biology-Informed Bayesian Optimization (BioBO), a method that integrates Bayesian optimization with multimodal gene embeddings and enrichment analysis, a widely used tool for gene prioritization in biology, to enhance surrogate modeling and acquisition strategies. BioBO combines biologically grounded priors with acquisition functions in a principled framework, which biases the search toward promising genes while maintaining the ability to explore uncertain regions. Through experiments on established public benchmarks and datasets, we demonstrate that BioBO improves labeling efficiency by 25-40%, and consistently outperforms conventional BO by identifying top-performing perturbations more effectively. Moreover, by incorporating enrichment analysis, BioBO yields pathway-level explanations for selected perturbations, offering mechanistic interpretability that links designs to biologically coherent regulatory circuits.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.