Papers
Topics
Authors
Recent
2000 character limit reached

GUIDE: A Diffusion-Based Autonomous Robot Exploration Framework Using Global Graph Inference

Published 24 Sep 2025 in cs.RO | (2509.19916v1)

Abstract: Autonomous exploration in structured and complex indoor environments remains a challenging task, as existing methods often struggle to appropriately model unobserved space and plan globally efficient paths. To address these limitations, we propose GUIDE, a novel exploration framework that synergistically combines global graph inference with diffusion-based decision-making. We introduce a region-evaluation global graph representation that integrates both observed environmental data and predictions of unexplored areas, enhanced by a region-level evaluation mechanism to prioritize reliable structural inferences while discounting uncertain predictions. Building upon this enriched representation, a diffusion policy network generates stable, foresighted action sequences with significantly reduced denoising steps. Extensive simulations and real-world deployments demonstrate that GUIDE consistently outperforms state-of-the-art methods, achieving up to 18.3% faster coverage completion and a 34.9% reduction in redundant movements.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.