Papers
Topics
Authors
Recent
2000 character limit reached

Latent Iterative Refinement Flow: A Geometric-Constrained Approach for Few-Shot Generation (2509.19903v1)

Published 24 Sep 2025 in cs.LG

Abstract: Few-shot generation, the synthesis of high-quality and diverse samples from limited training data, remains a significant challenge in generative modeling. Existing methods trained from scratch often fail to overcome overfitting and mode collapse, and fine-tuning large models can inherit biases while neglecting the crucial geometric structure of the latent space. To address these limitations, we introduce Latent Iterative Refinement Flow (LIRF), a novel approach that reframes few-shot generation as the progressive densification of geometrically structured manifold. LIRF establishes a stable latent space using an autoencoder trained with our novel \textbf{manifold-preservation loss} $L_{\text{manifold}}$. This loss ensures that the latent space maintains the geometric and semantic correspondence of the input data. Building on this, we propose an iterative generate-correct-augment cycle. Within this cycle, candidate samples are refined by a geometric \textbf{correction operator}, a provably contractive mapping that pulls samples toward the data manifold while preserving diversity. We also provide the \textbf{Convergence Theorem} demonstrating a predictable decrease in Hausdorff distance between generated and true data manifold. We also demonstrate the framework's scalability by generating coherent, high-resolution images on AFHQ-Cat. Ablation studies confirm that both the manifold-preserving latent space and the contractive correction mechanism are critical components of this success. Ultimately, LIRF provides a solution for data-scarce generative modeling that is not only theoretically grounded but also highly effective in practice.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.