MAGE: A Coarse-to-Fine Speech Enhancer with Masked Generative Model (2509.19881v1)
Abstract: Speech enhancement remains challenging due to the trade-off between efficiency and perceptual quality. In this paper, we introduce MAGE, a Masked Audio Generative Enhancer that advances generative speech enhancement through a compact and robust design. Unlike prior masked generative models with random masking, MAGE employs a scarcity-aware coarse-to-fine masking strategy that prioritizes frequent tokens in early steps and rare tokens in later refinements, improving efficiency and generalization. We also propose a lightweight corrector module that further stabilizes inference by detecting low-confidence predictions and re-masking them for refinement. Built on BigCodec and finetuned from Qwen2.5-0.5B, MAGE is reduced to 200M parameters through selective layer retention. Experiments on DNS Challenge and noisy LibriSpeech show that MAGE achieves state-of-the-art perceptual quality and significantly reduces word error rate for downstream recognition, outperforming larger baselines. Audio examples are available at https://hieugiaosu.github.io/MAGE/.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.