FreezeVLA: Action-Freezing Attacks against Vision-Language-Action Models (2509.19870v1)
Abstract: Vision-Language-Action (VLA) models are driving rapid progress in robotics by enabling agents to interpret multimodal inputs and execute complex, long-horizon tasks. However, their safety and robustness against adversarial attacks remain largely underexplored. In this work, we identify and formalize a critical adversarial vulnerability in which adversarial images can "freeze" VLA models and cause them to ignore subsequent instructions. This threat effectively disconnects the robot's digital mind from its physical actions, potentially inducing inaction during critical interventions. To systematically study this vulnerability, we propose FreezeVLA, a novel attack framework that generates and evaluates action-freezing attacks via min-max bi-level optimization. Experiments on three state-of-the-art VLA models and four robotic benchmarks show that FreezeVLA attains an average attack success rate of 76.2%, significantly outperforming existing methods. Moreover, adversarial images generated by FreezeVLA exhibit strong transferability, with a single image reliably inducing paralysis across diverse language prompts. Our findings expose a critical safety risk in VLA models and highlight the urgent need for robust defense mechanisms.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.