ThinkFake: Reasoning in Multimodal Large Language Models for AI-Generated Image Detection (2509.19841v1)
Abstract: The increasing realism of AI-generated images has raised serious concerns about misinformation and privacy violations, highlighting the urgent need for accurate and interpretable detection methods. While existing approaches have made progress, most rely on binary classification without explanations or depend heavily on supervised fine-tuning, resulting in limited generalization. In this paper, we propose ThinkFake, a novel reasoning-based and generalizable framework for AI-generated image detection. Our method leverages a Multimodal LLM (MLLM) equipped with a forgery reasoning prompt and is trained using Group Relative Policy Optimization (GRPO) reinforcement learning with carefully designed reward functions. This design enables the model to perform step-by-step reasoning and produce interpretable, structured outputs. We further introduce a structured detection pipeline to enhance reasoning quality and adaptability. Extensive experiments show that ThinkFake outperforms state-of-the-art methods on the GenImage benchmark and demonstrates strong zero-shot generalization on the challenging LOKI benchmark. These results validate our framework's effectiveness and robustness. Code will be released upon acceptance.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.