Papers
Topics
Authors
Recent
Search
2000 character limit reached

PART: Progressive Alignment Representation Training for Multilingual Speech-To-Text with LLMs

Published 24 Sep 2025 in cs.CL and cs.SD | (2509.19745v1)

Abstract: LLMs have expanded from text to speech, giving rise to Speech Large Models (SLMs) that support recognition, translation, and synthesis. A key challenge is aligning speech and text representations, which becomes harder in multilingual settings. Existing methods often freeze LLM parameters and train encoders on multilingual data, but this forces cross-language convergence and limits performance. We introduce Progressive Alignment Representation Training (PART), a multi-stage and multi-task framework that separates within-language from cross-language alignment. During cross-language training, LLM parameters are dynamically activated, and text-based tasks are later introduced to enhance multilingual understanding. Experiments on CommonVoice 15, Fleurs, Wenetspeech, and CoVoST2 show that PART surpasses conventional approaches, with analysis confirming its ability to balance language-specific distinctions and cross-language generalization. These results demonstrate PART's effectiveness and generality for multilingual speech modality alignment.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.