Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SMILES-Inspired Transfer Learning for Quantum Operators in Generative Quantum Eigensolver (2509.19715v1)

Published 24 Sep 2025 in physics.chem-ph and cs.AI

Abstract: Given the inherent limitations of traditional Variational Quantum Eigensolver(VQE) algorithms, the integration of deep generative models into hybrid quantum-classical frameworks, specifically the Generative Quantum Eigensolver(GQE), represents a promising innovative approach. However, taking the Unitary Coupled Cluster with Singles and Doubles(UCCSD) ansatz which is widely used in quantum chemistry as an example, different molecular systems require constructions of distinct quantum operators. Considering the similarity of different molecules, the construction of quantum operators utilizing the similarity can reduce the computational cost significantly. Inspired by the SMILES representation method in computational chemistry, we developed a text-based representation approach for UCCSD quantum operators by leveraging the inherent representational similarities between different molecular systems. This framework explores text pattern similarities in quantum operators and employs text similarity metrics to establish a transfer learning framework. Our approach with a naive baseline setting demonstrates knowledge transfer between different molecular systems for ground-state energy calculations within the GQE paradigm. This discovery offers significant benefits for hybrid quantum-classical computation of molecular ground-state energies, substantially reducing computational resource requirements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.