Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear Transformers Implicitly Discover Unified Numerical Algorithms (2509.19702v1)

Published 24 Sep 2025 in cs.LG and cs.AI

Abstract: We train a linear attention transformer on millions of masked-block matrix completion tasks: each prompt is masked low-rank matrix whose missing block may be (i) a scalar prediction target or (ii) an unseen kernel slice of Nystr\"om extrapolation. The model sees only input-output pairs and a mean-squared loss; it is given no normal equations, no handcrafted iterations, and no hint that the tasks are related. Surprisingly, after training, algebraic unrolling reveals the same parameter-free update rule across three distinct computational regimes (full visibility, rank-limited updates, and distributed computation). We prove that this rule achieves second-order convergence on full-batch problems, cuts distributed iteration complexity, and remains accurate with rank-limited attention. Thus, a transformer trained solely to patch missing blocks implicitly discovers a unified, resource-adaptive iterative solver spanning prediction, estimation, and Nystr\"om extrapolation, highlighting a powerful capability of in-context learning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube