Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Unified Noise-Curvature View of Loss of Trainability (2509.19698v1)

Published 24 Sep 2025 in cs.LG and cs.AI

Abstract: Loss of trainability (LoT) in continual learning occurs when gradient steps no longer yield improvement as tasks evolve, so accuracy stalls or degrades despite adequate capacity and supervision. We analyze LoT incurred with Adam through an optimization lens and find that single indicators such as Hessian rank, sharpness level, weight or gradient norms, gradient-to-parameter ratios, and unit-sign entropy are not reliable predictors. Instead we introduce two complementary criteria: a batch-size-aware gradient-noise bound and a curvature volatility-controlled bound that combine into a per-layer predictive threshold that anticipates trainability behavior. Using this threshold, we build a simple per-layer scheduler that keeps each layers effective step below a safe limit, stabilizing training and improving accuracy across concatenated ReLU (CReLU), Wasserstein regularization, and L2 weight decay, with learned learning-rate trajectories that mirror canonical decay.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.