Papers
Topics
Authors
Recent
2000 character limit reached

Memory-Augmented Potential Field Theory: A Framework for Adaptive Control in Non-Convex Domains (2509.19672v1)

Published 24 Sep 2025 in cs.RO and math.DS

Abstract: Stochastic optimal control methods often struggle in complex non-convex landscapes, frequently becoming trapped in local optima due to their inability to learn from historical trajectory data. This paper introduces Memory-Augmented Potential Field Theory, a unified mathematical framework that integrates historical experience into stochastic optimal control. Our approach dynamically constructs memory-based potential fields that identify and encode key topological features of the state space, enabling controllers to automatically learn from past experiences and adapt their optimization strategy. We provide a theoretical analysis showing that memory-augmented potential fields possess non-convex escape properties, asymptotic convergence characteristics, and computational efficiency. We implement this theoretical framework in a Memory-Augmented Model Predictive Path Integral (MPPI) controller that demonstrates significantly improved performance in challenging non-convex environments. The framework represents a generalizable approach to experience-based learning within control systems (especially robotic dynamics), enhancing their ability to navigate complex state spaces without requiring specialized domain knowledge or extensive offline training.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.