Papers
Topics
Authors
Recent
2000 character limit reached

Bias in the Picture: Benchmarking VLMs with Social-Cue News Images and LLM-as-Judge Assessment (2509.19659v1)

Published 24 Sep 2025 in cs.CV

Abstract: Large vision-LLMs (VLMs) can jointly interpret images and text, but they are also prone to absorbing and reproducing harmful social stereotypes when visual cues such as age, gender, race, clothing, or occupation are present. To investigate these risks, we introduce a news-image benchmark consisting of 1,343 image-question pairs drawn from diverse outlets, which we annotated with ground-truth answers and demographic attributes (age, gender, race, occupation, and sports). We evaluate a range of state-of-the-art VLMs and employ a LLM as judge, with human verification. Our findings show that: (i) visual context systematically shifts model outputs in open-ended settings; (ii) bias prevalence varies across attributes and models, with particularly high risk for gender and occupation; and (iii) higher faithfulness does not necessarily correspond to lower bias. We release the benchmark prompts, evaluation rubric, and code to support reproducible and fairness-aware multimodal assessment.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.