Are We Scaling the Right Thing? A System Perspective on Test-Time Scaling (2509.19645v1)
Abstract: Test-time scaling (TTS) has recently emerged as a promising direction to exploit the hidden reasoning capabilities of pre-trained LLMs. However, existing scaling methods narrowly focus on the compute-optimal Pareto-frontier, ignoring the simple fact that compute-optimal is not always system-optimal. In this work, we propose a system-driven perspective on TTS, analyzing how reasoning models scale against practical metrics, such as latency and cost-per-token. By evaluating the impact of popular optimizations such as tensor parallelism and speculative decoding, our preliminary analysis reveals the limitations of current methods and calls for a paradigm shift toward holistic, system-aware evaluations that capture the true essence of scaling laws at inference time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.