Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Advancing Speech Summarization in Multi-modal LLMs with Reinforcement Learning (2509.19631v1)

Published 23 Sep 2025 in eess.AS, cs.AI, and cs.CL

Abstract: Speech summarization is a critical component of spoken content understanding, particularly in the era of rapidly growing spoken and audiovisual data. Recent advances in multi-modal LLMs (MLLMs), leveraging the power of LLMs, enable generating textual summaries directly from speech without intermediate transcriptions, while supporting controllable styles and zero-shot generalization. However, open-source MLLMs continue to lag behind the state-of-the-art text-based LLMs, limiting their practical deployment for speech summarization. In this work, we present a novel multi-stage reinforcement learning training framework to enhance the speech summarization capabilities in MLLMs. Our model delivers substantial improvements over strong baselines, outperforms much larger MLLMs, and significantly narrows the gap with state-of-the-art text-based LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: