Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Knowledge Base-Aware Orchestration: A Dynamic, Privacy-Preserving Method for Multi-Agent Systems (2509.19599v1)

Published 23 Sep 2025 in cs.MA and cs.AI

Abstract: Multi-agent systems (MAS) are increasingly tasked with solving complex, knowledge-intensive problems where effective agent orchestration is critical. Conventional orchestration methods rely on static agent descriptions, which often become outdated or incomplete. This limitation leads to inefficient task routing, particularly in dynamic environments where agent capabilities continuously evolve. We introduce Knowledge Base-Aware (KBA) Orchestration, a novel approach that augments static descriptions with dynamic, privacy-preserving relevance signals derived from each agent's internal knowledge base (KB). In the proposed framework, when static descriptions are insufficient for a clear routing decision, the orchestrator prompts the subagents in parallel. Each agent then assesses the task's relevance against its private KB, returning a lightweight ACK signal without exposing the underlying data. These collected signals populate a shared semantic cache, providing dynamic indicators of agent suitability for future queries. By combining this novel mechanism with static descriptions, our method achieves more accurate and adaptive task routing preserving agent autonomy and data confidentiality. Benchmarks show that our KBA Orchestration significantly outperforms static description-driven methods in routing precision and overall system efficiency, making it suitable for large-scale systems that require higher accuracy than standard description-driven routing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.