Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Semantic-Aware Fuzzing: An Empirical Framework for LLM-Guided, Reasoning-Driven Input Mutation (2509.19533v1)

Published 23 Sep 2025 in cs.SE, cs.AI, and cs.CR

Abstract: Security vulnerabilities in Internet-of-Things devices, mobile platforms, and autonomous systems remain critical. Traditional mutation-based fuzzers -- while effectively explore code paths -- primarily perform byte- or bit-level edits without semantic reasoning. Coverage-guided tools such as AFL++ use dictionaries, grammars, and splicing heuristics to impose shallow structural constraints, leaving deeper protocol logic, inter-field dependencies, and domain-specific semantics unaddressed. Conversely, reasoning-capable LLMs can leverage pretraining knowledge to understand input formats, respect complex constraints, and propose targeted mutations, much like an experienced reverse engineer or testing expert. However, lacking ground truth for "correct" mutation reasoning makes supervised fine-tuning impractical, motivating explorations of off-the-shelf LLMs via prompt-based few-shot learning. To bridge this gap, we present an open-source microservices framework that integrates reasoning LLMs with AFL++ on Google's FuzzBench, tackling asynchronous execution and divergent hardware demands (GPU- vs. CPU-intensive) of LLMs and fuzzers. We evaluate four research questions: (R1) How can reasoning LLMs be integrated into the fuzzing mutation loop? (R2) Do few-shot prompts yield higher-quality mutations than zero-shot? (R3) Can prompt engineering with off-the-shelf models improve fuzzing directly? and (R4) Which open-source reasoning LLMs perform best under prompt-only conditions? Experiments with Llama3.3, Deepseek-r1-Distill-Llama-70B, QwQ-32B, and Gemma3 highlight Deepseek as the most promising. Mutation effectiveness depends more on prompt complexity and model choice than shot count. Response latency and throughput bottlenecks remain key obstacles, offering directions for future work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: