The Heterogeneous Multi-Agent Challenge (2509.19512v1)
Abstract: Multi-Agent Reinforcement Learning (MARL) is a growing research area which gained significant traction in recent years, extending Deep RL applications to a much wider range of problems. A particularly challenging class of problems in this domain is Heterogeneous Multi-Agent Reinforcement Learning (HeMARL), where agents with different sensors, resources, or capabilities must cooperate based on local information. The large number of real-world situations involving heterogeneous agents makes it an attractive research area, yet underexplored, as most MARL research focuses on homogeneous agents (e.g., a swarm of identical robots). In MARL and single-agent RL, standardized environments such as ALE and SMAC have allowed to establish recognized benchmarks to measure progress. However, there is a clear lack of such standardized testbed for cooperative HeMARL. As a result, new research in this field often uses simple environments, where most algorithms perform near optimally, or uses weakly heterogeneous MARL environments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.