Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hierarchical null controllability of a degenerate parabolic equation with nonlocal coefficient (2509.19505v1)

Published 23 Sep 2025 in math.OC and math.AP

Abstract: In this paper we use a Stackelberg-Nash strategy to show the local null controllability of a parabolic equation where the diffusion coefficient is the product of a degenerate function in space and a nonlocal term. We consider one control called \textit{leader} and two controls called \textit{followers}. To each leader we associate a Nash equilibrium corresponding to a bi-objective optimal control problem; then, we find a leader that solves the null controllability problem. The linearized degenerated system is treated adapting Carleman estimates for degenerated systems from Demarque, L\'imaco and Viana \cite{DemarqueLimacoViana_deg_sys2020} and the local controllability of the non-linear system is obtained using Liusternik's inverse function theorem. The nonlocal coefficient originates a multiplicative coupling in the optimality system that gives rise to interesting calculations in the applications of the inverse function theorem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.