Hierarchical null controllability of a degenerate parabolic equation with nonlocal coefficient (2509.19505v1)
Abstract: In this paper we use a Stackelberg-Nash strategy to show the local null controllability of a parabolic equation where the diffusion coefficient is the product of a degenerate function in space and a nonlocal term. We consider one control called \textit{leader} and two controls called \textit{followers}. To each leader we associate a Nash equilibrium corresponding to a bi-objective optimal control problem; then, we find a leader that solves the null controllability problem. The linearized degenerated system is treated adapting Carleman estimates for degenerated systems from Demarque, L\'imaco and Viana \cite{DemarqueLimacoViana_deg_sys2020} and the local controllability of the non-linear system is obtained using Liusternik's inverse function theorem. The nonlocal coefficient originates a multiplicative coupling in the optimality system that gives rise to interesting calculations in the applications of the inverse function theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.