Estimating the Self-Consistency of LLMs (2509.19489v1)
Abstract: Systems often repeat the same prompt to LLMs and aggregate responses to improve reliability. This short note analyzes an estimator of the self-consistency of LLMs and the tradeoffs it induces under a fixed compute budget $B=mn$, where $m$ is the number of prompts sampled from the task distribution and $n$ is the number of repeated LLM calls per prompt; the resulting analysis favors a rough split $m,n\propto\sqrt{B}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.