Papers
Topics
Authors
Recent
2000 character limit reached

Evaluation-Aware Reinforcement Learning (2509.19464v1)

Published 23 Sep 2025 in cs.AI and cs.LG

Abstract: Policy evaluation is often a prerequisite for deploying safety- and performance-critical systems. Existing evaluation approaches frequently suffer from high variance due to limited data and long-horizon tasks, or high bias due to unequal support or inaccurate environmental models. We posit that these challenges arise, in part, from the standard reinforcement learning (RL) paradigm of policy learning without explicit consideration of evaluation. As an alternative, we propose evaluation-aware reinforcement learning (EvA-RL), in which a policy is trained to maximize expected return while simultaneously minimizing expected evaluation error under a given value prediction scheme -- in other words, being "easy" to evaluate. We formalize a framework for EvA-RL and design an instantiation that enables accurate policy evaluation, conditioned on a small number of rollouts in an assessment environment that can be different than the deployment environment. However, our theoretical analysis and empirical results show that there is often a tradeoff between evaluation accuracy and policy performance when using a fixed value-prediction scheme within EvA-RL. To mitigate this tradeoff, we extend our approach to co-learn an assessment-conditioned state-value predictor alongside the policy. Empirical results across diverse discrete and continuous action domains demonstrate that EvA-RL can substantially reduce evaluation error while maintaining competitive returns. This work lays the foundation for a broad new class of RL methods that treat reliable evaluation as a first-class principle during training.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.