Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Statistical Mixture-of-Experts Framework for EMG Artifact Removal in EEG: Empirical Insights and a Proof-of-Concept Application (2509.19385v1)

Published 21 Sep 2025 in eess.SP and cs.LG

Abstract: Effective control of neural interfaces is limited by poor signal quality. While neural network-based electroencephalography (EEG) denoising methods for electromyogenic (EMG) artifacts have improved in recent years, current state-of-the-art (SOTA) models perform suboptimally in settings with high noise. To address the shortcomings of current ML-based denoising algorithms, we present a signal filtration algorithm driven by a new mixture-of-experts (MoE) framework. Our algorithm leverages three new statistical insights into the EEG-EMG denoising problem: (1) EMG artifacts can be partitioned into quantifiable subtypes to aid downstream MoE classification, (2) local experts trained on narrower signal-to-noise ratio (SNR) ranges can achieve performance increases through specialization, and (3) correlation-based objective functions, in conjunction with rescaling algorithms, can enable faster convergence in a neural network-based denoising context. We empirically demonstrate these three insights into EMG artifact removal and use our findings to create a new downstream MoE denoising algorithm consisting of convolutional (CNN) and recurrent (RNN) neural networks. We tested all results on a major benchmark dataset (EEGdenoiseNet) collected from 67 subjects. We found that our MoE denoising model achieved competitive overall performance with SOTA ML denoising algorithms and superior lower bound performance in high noise settings. These preliminary results highlight the promise of our MoE framework for enabling advances in EMG artifact removal for EEG processing, especially in high noise settings. Further research and development will be necessary to assess our MoE framework on a wider range of real-world test cases and explore its downstream potential to unlock more effective neural interfaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.